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A Bayesian procedure is presented for estimating the reliability (or availability) of a complex
system of independent binomial series or parallel subsystems and components. Repeated
identical components or subsystems are also permitted. The method uses either test or prior
data (perhaps both or neither) at the system, subsystem, and component levels. Beta prior
distributions are assumed throughout. The method is motivated and illustrated by the fol-
lowing problem. It is required to estimate the unavailability on demand of the low-pressure
coolant injection system in a certain U.S. commercial nuclear-power boiling-water reactor.
Three data sources are used to calculate the posterior distribution of the overall system
demand unavailability from which the required estimates are obtained. The sensitivity of the
results to the three data sources is examined. A FORTRAN computer program for imple-
menting the procedure is available.

KEY WORDS: Availability analysis; Bayesian statistics; Binomial sampling; Prior distri-
bution; System reliability.

1. INTRODUCTION

Martz, Waller, and Fickas (1988) (henceforth re-
ferred to as MWF) presented a Bayesian procedure
for estimating the reliability of a series system of
independent binomial subsystems and components.
They considered either test or prior data (including
both or neither) at three or more configuration levels
in the system. In this article, this method is extended
to arbitrary system configurations of series/parallel
subsystems of other subsystems or components. Be-
cause of the similarity between this and the earlier
MWEF procedure, readers are referred ta MWF for
supporting details. In particular, the procedure pre-
sented here uses several MWF definitions and tech-
niques—the notion of native and induced prior
distributions (MWEF, sec. 2), a beta approximation
method for obtaining the induced prior distributions
(MWF, sec. 2.2), Monte Carlo simulation for ex-
amining the validity of the beta approximation
(MWEF, sec. 2.3), and a procedure for combining
native and induced subsystem prior distributions
(MWEF, sec. 2.4). Barlow (1985), Cole (1975), Dostal
and lannuzzelli (1977), Mastran (1976), Mastran
and Singpurwalla (1978), and Natvig and Eide (1987)
considered the problem of obtaining Bayesian esti-
mates of the reliability of either simple or complex
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series/parallel arrangements of independent pass/
fail components. MWF also contains additional ref-
erences.

The Bayesian procedure presented was motivated
by the following problem concerning the engineered
safety features of a certain 1,150 megawatts electric
U.S. commercial nuclear-power boiling-water reac-
tor. In such a reactor, one important safety system
is the low-pressure coolant injection (LPCI) system
that provides coolant to the reactor vessel during
accidents in which vessel pressure is low. It consists
of two trains containing pumps, valves, heat exchan-
gers, and piping. It normally operates in a standby
mode, awaiting a demand for its use. Consequently,
certain components must perform a change of state
on demand; for example, the motor-driven pumps
must start, the motor-operated valves must operate,
and the check valves must open. Once started, the
system must operate for a designated length of time,
and, consequently, various time-related failure
modes are also of interest. We restrict our attention
here, however, to failure to start on demand (or
simply failure on demand). In this case the binomial
distribution is the appropriate model for the test data
and the probability of the system failure on demand
is known as its demand unavailability. The system
may be unavailable on demand for two reasons, fail-
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ure while on standby and unscheduled maintenance.
For simplicity only, however, that portion of demand
unavailability caused by standby failure is considered
here.

Figure 1 shows the system-demand-availability
block diagram corresponding to an accident in which
a single pump train would be sufficient to mitigate
the accident. The system-demand-availability block
diagram thus consists of two trains in parallel, each
consisting of two parallel pump trains, both of which
operate in series with a motor-operated valve and a
check valve. The problem is to estimate the sys-
tem demand unavailability due to failure while on
standby based on tests and prior data on each com-
ponent, as well as additional prior data on pump
trains A-D and LPCI subsystems A-B. Figure 1 also
shows the decomposition of the system into a set of
11 series or parallel subsystems required for the

model presented in Section 2. This problem is again
considered in Section 3.

The situation considered here is one in which a
system of conditionally independent components
may be decomposed into a set of m series or parallel
subsystems of other subsystems or components.
Some of the components or subsystems may appear
more than once in the system. These multiple ap-
perances do not mean that the same device performs
more than one function in the system. Rather, the
replicated devices represent those that are either
known or believed to have identical reliabilities (or
availabilities). Such repeated devices often will have
binomial test results only about the common generic
device and not about each individual physical device
in the system. The method accommodates such rep-
licated devices.

A proposed solution to the extended problem is

LPCI System (11)

LPCI Train A (9)

Pump Subsystem A (7)

LPCI Train B (10)

__ Pump SubsystemB 8)
. Eump Train B (E} o
= . |
| Pump B CV-48 B [ LPCI Subsystem B (2)
[~ pe—
S o e | | ;
I Pump Train D (6) : Mog - cv-4 B
e e e | |
W e .
I : Pump D CV-48D |

Figure 1. LPC| System-Demand-Availability Block Diagram: LPCI, Low Pressure Coolant Injection; MOV, Motor-Operated Valve,
CV, Cheek Valve. The numbers in parentheses are subsystem identifiers.
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presented in Section 2. In Section 3 the coolant-in-
jection-system problem is again considered and used
to illustrate the method. Some conclusions are pre-
sented in Section 4.

2. THE EXTENDED-BAYES!IAN-ANALYSIS
MODEL

The number of survivors s of a device in 7 inde-
pendent tests is assumed to follow a binomial distri-
bution f(s|r;n) (s =0,...,n,0=r=1), where
r is the common survival probability (reliability) of
the device across the n tests. The prior distribution
for r is taken to be the B( p, q) distribution defined
by MWE.

The notation and data structure is the same as
defined by MWF with one important difference. The
label component here denotes any subsystem that
acts like a component in the procedure. Recall that
a subsystem may consist of a series or parallel ar-
rangement of components or other subsystems. Such
nested subsystems (when they exist) play the role of
components, thus the use of the generalized notion
and corresponding label component. The system is
assumed to be decomposable into a set of m subsys-
tems in which the ith subsystem contains k; non-
identical (unique) components in series or parallel.

The procedural steps of a Bayesian model for solv-
ing the extended problem considered here are quite
similar to those of MWF. They consist of (a) decom-
posing the system into a set of m series or parallel
subsystems of other subsystems or components, (b)
following steps 1-5 (Stage 1—Subsystem Level Anal-
ysis) of MWE, and (c) repeating (b) for each of the
m subsystems identified in (a).

The Bayesian procedure as presented can be ap-
plied to complex series/parallel systems. The system
decomposition ensures that a system under consid-
eration has the requisite series/parallel structure and
identifies the procedural order to follow in the anal-
ysis. We prefer to perform the decomposition using
a reliability block diagram of the system. Because of
the complementary relationship between unreliabil-
ity and reliability (e.g., series reliability logic is
equivalent to parallel unreliability logic), unreliabil-
ity block diagrams can also be used, however.

The decomposition follows a bottom-up approach.
It begins with the identification of those subsystems
at the lowest level in the system, where low means
a simple series or parallel arrangement of actual com-
ponents as opposed to other subsystems. This process
of identification continues upward as previously iden-
tified subsystems become components in yet higher-
order subsystems. The decomposition finally culmi-
nates in the identification of the overall system (the
highest-order subsystem in the decomposition) as

some series or parallel configuration of high-order
subsystems (when treated as single entities). This
decomposition process provides a structured proce-
dure for the analysis, is easy to do, and, even for
complex series/parallel systems, is quite straightfor-
ward in practice. It is illustrated in Section 3.

Following a few simple guidelines when per-
forming the decomposition is beneficial later in the
Bayesian procedure. The subsystems should all be
consecutively numbered 1 to m, with the mth sub-
system denoting the system itself (see Fig. 1). Hence-
forth, when we refer to the mth subsystem, we are
referring to the complete system. Moreover, we have
found it helpful to construct a table indicating which
components are contained in each subsystem by both
name and subsystem number. Both input test and
prior data, as well as output posterior beta distri-
bution parameters, can also be displayed for each
subsystem as they are determined in the course of
the analysis.

Further, for simple (pure) series, parallel, series-
parallel, or parallel-series systems, there is only a
single level of subsystem nesting—the mth subsystem
is a pure series or parallel configuration of the lowest-
order subsystems themselves. On the other hand,
complex series/parallel systems can have many levels
of subsystem nesting depending on the complexity
of the system.

The following discussion refers to steps 1-5 of
MWEF, the important differences being the necessary
notation to accommodate identical components and
parallel structures.

Suppose now that there exist data only about the
generic component in each set of identical compo-
nents and further that each set of identical compo-
nents always appears together in the same subsystem.
This situation occurs frequently when redundant
(identical) components are arranged in an active par-
allel configuration. Let k; (i = 1, . . ., m) denote
the number of nonidentical (uniquely different) com-
ponents in subsystem i. Further, letk; (j=1,...,
k;) denote the number of replications of the jth non-

“identical component in subsystem i. Note that the

total number of components in the ith subsystem is
2, k;;. For example, for the ith simple series subsys-
tem of components given by 1-1-1-2-2-3-4, in
which components with the same number are iden-
tical, we have k; = 4, k;;y = 3,k = 2, ks = kiy =
1, and 2,- k; = 7. In the LPCI-system example, in
spite of the redundancy, each component is assumed
to have its own unique underlying availability value
and thus there are no identical components (k; = 1
for all i and j). .

Two cases are considered. First, suppose that the
jth nonidentical component in the ith subsystem is

TECHNOMETRICS, NOVEMBER 1990, VOL. 32, NO. 4
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an actual component (as opposed to a lower-order
subsystem). For a binomial sampling model f(s;; | r;;;

n;) and a f(s) + 1, n§ — s§ + 1) prior on r;, the
corresponding posterior distribution is a f(s; + ¥
+ 1,n; + n} — s; — % + 1) distribution. Of course,
if there are no binomial test data for the component,
then the posterior is the same as the prior distribu-
tion. In the absence of prior data, some type of non-
informative prior must be used, such as a (1, 1) or
B(.5, .5) distribution.

Now suppose that the jth nonidentical component
in the ith subsystem is a lower-order subsystem that
has been previously considered. The bottom-up de-
composition of the system ensures that this will be
so. The previous analysis on this lower-order sub-
system (the component in the current subsystem)
produced a subsystem posterior beta distribution for
this component. This previously obtained subsystem
posterior beta distribution now becomes the prior
distribution for the jth component in the ith (current)
subsystem analysis. Any subsystem-level binomial
test results on this component have already been
considered in obtaining the subsystem posterior beta
distribution. Therefore, there are no binomial test
data for this component in the ith (current) subsys-
tem analysis, and thus s; = n; = 0. The posterior
beta distribution from the previous analysis of this
component must of course be expressed in the same
component beta prior form as in the case of an actual
(true) component. This form will be presented later.
Thus the posterior distribution for the jth component
in the analysis of the ith (current) subsystem is simply
the posterior distribution obtained for this compo-
nent from the previous analysis. This iterative pro-
cess will be illustrated in Section 3.

The induced prior distribution for the reliability r,
of the ith subsystem, g(r;), depends on whether the
subsystem is a series or a parallel configuration and
the structure of the identical components within the
subsystem. All nonidentical components are further
assumed to have underlying prior reliability values
that are independently distributed. For a series con-
figuration, the ith subsystem reliability expression is
given by

ki
r = H r,{;'ii. (1)

j=1

In this case, the induced prior distribution on r; given
in (1) is the distribution of the product of powers of
independent beta random variables in which r; has
the posterior component beta distribution given pre-
viously. In the case of all nonidentical components,
k;; = 1for all j, k; is the total number of components
in the subsystem, and (1) reduces to the usual prod-
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uct-reliability rule. Note that for notational ease we
have suppressed the conditional dependence of g(r;)
on the component prior and test data, a convention
that we will continue to follow.

Now consider a parallel subsystem configuration.
The ith subsystem reliability expression becomes

= 1-fa-np )

The posterior distribution of component unreliability
1- r,-,-isﬂ(nil- + n% it Sg + l,s,'j + Sg' + 1),
in which n; = s; = 0 if the component is in fact a
previously analyzed subsystem. Of course, for a true
(actual) component, binomial test results may be
either unavailable or nonexistent, in which case n;
= §;; = 0. The induced prior distribution on r; in (2)
is thus the complementary distribution of the product
of powers of independent beta random variables
given previously.

Although it is sometimes possible to determine the
exact distribution of a product of powers of inde-
pendent beta random variables, various authors have
suggested approximating the exact distribution with
a beta distribution having the same first two mo-
ments. This approximation was also used by MWF.
Using this approximation, the approximate induced
prior distribution on r;, denoted by g,(r;), is a f(a;,
b)) distribution in which

a; = M(M; — W)I(W; — M}
= (1 - M)M, - W)I(W, - M) (3)

and where

ki ﬁ s’l 'I+q
=i Lg=i \my + n) + g+ 1

for a series subsystem

—ﬁ ﬁ(ni+n?,-—s,-,-—s?i+q>:|
=1 La=i ni+n)+q+1 ’

for a parallel subsystem (4)

_ki 2k 5;;
W"",lJl lj( +n°+q+1)]

for a series subsystem

e

n,,+n,,+q+1

X—ﬁ ”u+nl/ ii_s?i+q) +1,
n; +n%+q+1

for a parallel subsystem. (5)
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Note that M; and W, given in (4) and (5) are the first
two moments, E(r;) and E(r?), of (1) and (2) for a
series and parallel subsystem configuration, respec-
tively. The corresponding approximate induced prior
beta cdf on r; is denoted by G,(r).

As discussed by MWF (sec. 2.3), in certain cases
techniques exist for obtaining the exact induced sub-
system prior distribution G(r;) in closed form. Com-
putational instabilities often occur when using these
exact methods, however. Consequently, as in MWE,
we examine the quality of the beta approximation to
the exact induced ith subsystem prior by simulating
the distribution of ; defined by either (1) or (2) and
by computing the corresponding Kolmogorov—Smir-
nov (KS) two-sided p value for the beta hypoth-
esis.

MWEF described and used a method first proposed
by Winkler (1968) for averaging the ith subsystem
native and induced priors to produce a single com-
bined beta prior. This same method is used here.
Further, the MWF requirement that s{ and n} be
nonnegative integers is relaxed here.

We now use the Bayes theorem in conjunction
with the binomial test data and the combined beta
prior to obtain the ith subsystem posterior beta dis-
tribution. The details are found in MWEF. Recall
that the mth subsystem denotes the overall system.
Consequently, (s,, n,) denotes binomial system
test data, and the corresponding native prior param-
eters (s5, ng,) also denote system beta prior param-
eters.

As discussed earlier, the ith subsystem posterior
beta distribution given previously may serve as a
component beta prior distribution in a subsequent
higher-order subsystem. Denote this higher-order
subsystem by / and the component, which the ith
subsystem occupies, as p. In such a case, the cor-
responding component beta prior parameters (s,,
n},) for use in the /th subsystem analysis are given
by

sh = wala; + wps)) + 5, + wp — 1
n, = wala; + b) + wan? + n; + 2wy — 2. (6)
3. EXAMPLE

As discussed in Section 1, the example concerns
the unavailability on demand due to standby failure
of the LPCI system in a certain U.S. commercial
boiling-water reactor. Figure 1 shows the demand-
availability block diagram for this system. Because
the Bayesian model presented here is based on re-
liability rather than unreliability considerations, we
will consider availability on demand throughout the
analysis and express only the final results and esti-
mates in terms of unavailability.

Table 1. Accident Sequence Evaluation Program LPCI
System-Component Beta-Prior Demand-Availability Data

Component Failure mode sf nj
Motor-driven pump Failure to start 190.17 189.79
Motor-operated valve  Failure to operate 469.13 469.90

Check valve Failure to open 14,231.34  14,232.12

Three data sources are considered. Table 1 con-
tains component-demand-availability data in the
form of beta distribution parameters on motor-
driven pumps, motor-operated valves, and check
valves based on data reported in the Nuclear Reg-
ulatory Commission Accident Sequence Evaluation
Program data base (U.S. Nuclear Regulatory Com-
mission 1987). These data represent a compendium
of several data sources for similar components in
similar nuclear-power-plant systems; thus these data
are appropriate for use in a Bayesian analysis as
prior-component data. The data were fitted to beta
priors by matching either moments or quantiles. It
is observed that the pump data exhibit the greatest
uncertainty, whereas the check-valve data express
the largest mean availability. Although s > nf for
motor-driven pumps in Table 1, the interpretation is
correct and follows that of MWF.

Table 2 contains the binomial-component-test data
for each of the components in the coolant injection
system in the specific plant of interest, here based
on monthly testing of each component. The data
were obtained from the plant testing and mainte-
nance records. Each component is tested separately,
and, consequently, each component is considered to
have a uniquely different underlying availability
value. Thus all components are considered to be non-
identical throughout the analysis, and k; = 1 for all
i and j. Several components are replicate designs,
however; pumps A and D; pumps B and C; CV-48
A, B, C, and D; MOV-25 A and B; and CV-46 A
and B are the same. In Table 2, s; represents the
number of nonoccurrences of the corresponding fail-
ure mode when n; = 240 test demands.

Table 3 presents demand-availability data in the

Table 2. Plant-Specific LPCI System-Component Binomial

Test Data

Component Failure mode s ny
Pump A Failure to start 236 240
Pump B Failure to start 240 240
Pump C, D Failure to start 238 240
Cv-48A,B,C,D* Failure to open 240 240
Cv-46 A, B* Failure to open 240 240
MOV-25 A, B® Failure to operate 240 240

2 CV indicates check valve,
b MOV indicates motor-operated valve.

TECHNOMETRICS, NOVEMBER 1990, VOL. 32, NO. 4
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Table 3. IEEE Std. 500 LPC! Subsystem Beta Prior

Demand-Availability Data
Subsystem Failure mode s? n?
Pump train A, B, C, D Failure on demand .65 -.42

LPCl subsystem A, B Failure on demand 241.87 242.66

form of beta distribution parameters on the lowest-
order subsystems in the system—namely, pump
trains A, B, C, and D and LPCI subsystems A and
B. These data are based on composited IEEE Std.
500 reliability data (IEEE 1983) from sections
11.1.2.4.2.2, 11.2.3, and 11.2.a.2. Because the data
are a composite of many sources, they will be used
as subsystem-level prior data in the analysis. The
pump-train beta parameters in Table 3 represent a
diffuse beta prior. This is a direct consequence of the
large difference between the recommended and high
failure-rate estimates for a centrifugal residual heat-
removal pump given in the IEEE Std. 500 data.
There exist neither test nor prior data on the higher-
order subsystems in the system in Figure 1; thus only
the data in Tables 1-3 will be used in the analysis.

From the data in Tables 1-3, we have the exact
same state of knowledge for subsystems 1 and 2 re-
garding their availability, although they are non-
identical. The same situation exists for subsystems 4
and 6. Thus there is no need to analyze such pairs
separately. Effectively then, there are only nine dif-
ferent subsystems that must be analyzed in the sys-
tem.

Consider LPCI subsystem A (or B). This is a series
subsystem of two components (k; = 2). The induced
prior approximate distribution for the availability of
LPCI subsystem A on demand is computed according
to (3) to be a §(743.41, 1.94) distribution.

Now let us compute the combined prior. The na-
tive prior IEEE data in Table 3 is probably based on
some of the same data sources as the data in Table
1. Accordingly, the sum of the weights was taken to
be 1. To avoid placing too much weight on the IEEE
data relative to the two other data sources, weights
of .75 and .25 were placed on the induced and native
priors, respectively; the sensitivity of the results to
this choice will be considered later, however. This
choice yielded a $(618.27, 1.91) combined prior. Be-
cause there are no binomial test data on LPCI sub-
system A, the posterior reduces to the combined
prior.

Now consider pump train A (subsystem 3). The
induced prior approximate distribution for this series
subsystem availability is computed to be a §(431.89,
4.72) distribution. The same weights were chosen as
before, yielding a combined £(324.31, 3.55) prior
(and posterior) distribution.
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As mentioned earlier, pump trains C and D (sub-
systems 4 and 6) have the same state of knowledge
regarding their availability. The induced prior for
each series subsystem availability is computed to be
a f(437.57, 2.73) distribution. With the same weights
as before, the combined prior (and posterior) is a
f(328.57, 2.05) distribution. Pump trains C and D
have an availability distribution that is located just
slightly to the right of the corresponding distribution
for pump train A because pump A was observed to
have two more failures to start on demand than
pumps C or D.

Similarly, the induced prior approximate distri-
bution for pump train B (subsystem 5) availability is
computed to be a $(466.93, .73) distribution. Again,
using the same weights, the combined prior (and
posterior) is a $(350.59, .55) distribution. Note that
the availability distribution for pump train B is
shifted to the right of pump trains C and D.

Now consider pump subsystem A (subsystem 7).
This subsystem is different in that subsystems 3 and
4 become the two components in this parallel sub-
system. From (6), the beta posterior parameters for
subsystem 3 correspond to component beta prior pa-
rameters 5%, = 323.31 and nj;, = 325.86. Similarly,
from (6) the component beta-prior parameters for
subsystem 4 are 5% = 327.57 and n, = 328.62. As
previously discussed, there are no binomial-test data
for these two components and, again using (3), the
induced-prior approximate distribution for the de-
mand availability of pump subsystem A is computed
to be a £(16,625.22, 1.12) distribution.

The calculations for the remaining subsystems are
quite similar and equally straightforward. Table 4
summarizes the results for all 11 subsystems and in-
cludes the two-sided KS p values for the hypothesis
of an approximate induced-beta-prior distribution,
the parameters of the induced beta prior, and cor-
responding posterior distributions, as well as the
.05, .50, and .95 quantiles of the posterior distribu-
tion.

One important practical benefit of using this
method is apparent in Table 4. Because of the bot-
tom-up system decomposition, the intermediate sub-
system results track the increase or decrease in
availability as the system increases in complexity. For
example, there is roughly an increase of .008 in the
median availability of two pump trains in parallel
(pump subsystem A) over a single train. Such results
are helpful in understanding and ordering the con-
tributors to final system availability.

Finally, we see from Table 4 that the required
posterior distribution of unavailability on demand for
this system is a right-skewed (L-shaped) (.78,
80,745.70) distribution. A common Bayesian point
estimate of the demand unavailability of this system
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Table 4. Subsystem Results for the Demand Availability of the LPCI System
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Posterior quantiles
Sub- Induced beta KS Beta
system Name prior p value posterior .05 .5 .95
1 LPCI subsystem A p(743.41, 1.94) 50 pl618.27, 1.91) .9926 .9974 .99949
2 LPCI subsystem B pl743.41, 1.94) .50 p1618.27, 1.91) .9926 .9974 .89949
3 Pump train A pl431.89, 4.72) .99 p(324.31, 3.55) .978 .9901 .9966
4 Pump train C Bl437.57, 2.73) .55 p(328.57, 2.05) .985 .9948 .9989
5 Pump train B pl466.93, .73) .30 $(350.59, .55) .9942 .99922 .999990
6 Pump train D pla37.57, 2.73) .55 p(328.57, 2.05) .985 .9948 .9989
7 Pump subsystem A $(16,625.22, .49 p(16,625.22, .99981 .999951 .9999955
1.12) 1.12)

8 Pump subsystem B B(32,444.46, .32) 37 Bl(32,444.46, .32) 999956 .9999974 .9999999980
9 LPC! train A Bl631.26, 1.99) 74 p(631.26, 1.99) .9925 9974 .99944

10 LPCl train B $(620.20, 1.92) .68 B(620.20, 1.92) .9926 9974 .99948

1 LPCI system B(80,745.70, .78) 21 B(80,745.70, .78) 999968 .9999940 .99999975

is the posterior mean of 9.7 X 10-¢, but a two-sided
symmetric 9% Bayesian probability interval for the
unknown unavailability is (2.5 x 1077, 3.2 x 10~%).
The posterior median is 6.0 X 10-%. From the pos-
terior mean, it is estimated that the LPCI system will
be unavailable on demand (as a consequence of a
standby failure) an average of once every 103,000
demands.

Let us now examine the sensitivity of the results
to the data sources and weights used in the analysis.
Such an analysis is useful in understanding the influ-
ence and contribution of the various data sources to
the results, and we recommend it as the final step
when using this method. Table 5 gives the final pos-
terior system-demand unavailability distribution for
several choices of weights applied to the IEEE data
and for all possible combinations of the three data
sources used in the analysis. The number in paren-
theses in the column labeled “IEEE” is the weight
w;, applied to the native prior when computing the
combined subsystem prior. The absence of IEEE

data corresponds to w;, = 0 and the absence of both
other data sources corresponds to w, = 1.

When binomial test data are used without the Ac-
cident Sequence Evaluation Program data, some
kind of noninformative component prior must be
used. In cases 3 and 5, Jeffreys’s noninformative f(.5,
.5) priors were used, and §(1, 1) (uniform) priors
were used in case 6. By comparing cases 5 and 6, we
see that the use of uniform priors tends to shift the
unavailability distribution toward higher unavaila-
bility values. The use of Jeffreys’s priors also pro-
duces a somewhat more diffuse system posterior
distribution. Since (.5, .5) is more diffuse than (1,
1), the component posteriors tend more toward the
high component availabilities implied by the test data
when using Jeffreys’s priors. For this reason we rec-
ommend the use of Jeffreys’s noninformative priors
when few (if any) component failures have been ob-
served.

Cases 1, 2, 8, and 9 illustrate the resulting effect
on the system posterior-demand-unavailability dis-

Table 5. Sensitivity of the Posterior LPCI System-Demand-Unavailability Distribution to the Data Sources and Weights Used

in the Analysis

Data source Quantiles
Posterior
Case Test ASEP® IEEE distribution Mean .05 .50 .95
1 yes yes yes(.25} Bl.78, 80,745.70) 9.7E-6 2.5E-7 6.0E-6 3.2E-5
2 yes yes no(0) B(.80, 114,764.31) 7.0E-6 2.0E-7 4.4E-6 2.3E-5
3 yes no yes(.25) p(.46, 17,738.31) 2.6E-5 6.6E-8 1.1E-5 1.0E-4
4 no yes yes{.25) B(.75, 38,837.29) 1.9E-6 4.2E-7 1.2E-5 6.4E-5
5 yes no no(0) B(.37, 20,038.40) 1.8E-5 1.1E-8 6.1E-6 7.9E-5
6° yes no no(0) B(.88, 12,067.35) 7.3E-5 2.6E-6 4.7E-5 2.3E4
7 no yes no(0) Bl.76, 50,100.78) 1.5E-5 3.5E-7 9.2E-6 5.0E-5
8 no no yes(1) B(.20, 3,366.00) 5.9E-5 5.3E-11 6.0E-6 3.0E-4
9 yes yes yes(.5) B(.76, 52,308.11) 1.6E-5 3.4E-7 8.9E-6 4.8E-5

8 Jeffreys’s noninformative component priors.
b Uniform component priors.
¢ Accident Sequence Evaluation Program.
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tribution as the weight given to the IEEE data goes
from 0 to 1. The mean system unavailability increases
by almost an order of magnitude, reflecting the some-
what higher component mean unavailabilities of the
IEEE data. As w;, increases from 0 to .5 in the pres-
ence of both other data sources (cases 2, 1, and 9),
the system distribution shifts slightly toward higher
unavailability values, but the dispersion remains rel-
atively unchanged. The value chosen for w;, thus has
relatively little effect, provided the test and Accident
Sequence data are used.

Cases 2, 5, 7, and 8 compare the effects of the
IEEE data to those produced by either (or both) of
the other two data sources. Because of the diffuse
IEEE pump-train data, the IEEE data by itself pro-
duces a much more diffuse system-posterior distri-
bution than either or both of the other sources. Case
8 represents the most diffuse posterior distribution
present.

Cases 5, 7, and 8 compare the results when using
only a single data source. In the absence of the Ac-
cident Sequence data, both the test and IEEE data-
produced posteriors are quite diffuse with the IEEE
data producing a significantly more diffuse posterior
(cases 5 and 8). Cases 5 and 7 compare the results
for test versus Accident Sequence data in the absence
of IEEE data. The results using test data only are
slightly weaker (more diffuse) than using only Ac-
cident Sequence data, but both posteriors have about
the same location. Observe that the Accident Se-
quence data produce a corresponding posterior that
is the least diffuse of all three (case 7). In this sense,
the Accident Sequence data have the most influence
on the final system posterior. This can be clearly seen
in Figure 2, in which all nine system posterior de-
mand-unavailability probability-density functions
are plotted. The upper three density functions cor-
respond to the absence of Accident Sequence data
(cases 3, 5, and 8), and the second group (cases 1,
2, 4,7, and 9) all have this source present. All of
the densities are L-shaped beta distributions, and a
log scale for unavailability is used to separate the
densities. Three distinct groupings are readily ap-
parent. Case 6, the use of only test data in conjunc-
tion with uniform component priors, is also clearly
in a separate class. In order of diffuseness, the upper
set of three densities is most diffuse (because of the
sharper “bend” in the L-shaped density), followed
by the second set of five densities. Finally, case 6 is
the least diffuse.

The use of uniform component priors in the ab-
sence of Accident Sequence and IEEE data reduces
posterior diffuseness even more than the additional
use of Accident Sequence data (see cases 2, 5, and
6 in Fig. 2). Thus, in the absence of Accident Se-
quence data, the choice of noninformative compo-
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nent priors can be quite influential, especially on the
interval estimation of system demand unavailability.
It is clear that the use of uniform component priors
may be producing some degree of spurious variance
reduction in this example. Consequently, as stated
earlier, we recommend the use of Jeffreys’s com-
ponent priors.

Cases 2 and 5 show the effect of adding the Ac-
cident Sequence data to an analysis in which only
the test data is used in the absence of IEEE data.
The net effect is to shift the final posterior slightly
toward smaller unavailability values and to decrease
the diffuseness as a consequence of the use of the
Accident Sequence data.

4. DISCUSSION

A Bayesian procedure for determining the reli-
ability (or availability) of a complex system of in-
dependent binomial series or parallel subsystems has
been developed. The procedure uses both test and
prior data at the component, subsystem, and system
levels. Although the procedure is a Bayesian one
based on subjective degree of belief in the form of
beta prior distributions, an analysis using only bi-
nomial test data may be performed. Noninformative
component priors would be assigned, and the re-
sulting posterior system distribution could then be
used to provide estimates that depend almost exclu-
sively on the test results. Some degree of subjectivity
still remains, however, as a consequence of the
choice of noninformative priors; cases 5 and 6 in
Table 5 illustrate this.

Existing Bayesian-system reliability methods are
often inadequate for several reasons. Most existing
methods are either mathematically or computation-
ally cumbersome and are difficult to implement in
practice. The required posterior distributions are
often quite complicated. In contrast, this method is
easily implemented, and the required posterior dis-
tributions are usually well approximated by beta
distributions. Many methods consider only point es-
timates, but this method considers both point and
interval estimates that are easily computed. Unlike
other methods, this method provides clear insight
regarding the contributors and makeup of the esti-
mated reliability of a complex system (including the
uncertainty in the reliability estimate) because of its
iterative bottom-up structure. We have found this to
be extremely useful in practice. Sensitivities of the
system reliability to the prior and/or test data can
be easily examined. Most existing methods that con-
sider both system and component prior information
use complex top-down inductive arguments to ap-
portion the system-level prior distribution at the
component level so as to ensure consistent prior be-
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Figure 2. The Posterior LPCI System-Demand-Unavailability Distributions in Table 5.

liefs. The method presented here resolves such in-
consistencies in a straightforward deductive way as
simple averages of inconsistent prior distributions.
Several existing methods consider both component
and system-level tests and/or prior data but in a much
more restrictive manner than the method considered
here. In fact, we know of no other Bayesian method
that integrates component, subsystem, and system
prior and test data in the unified manner considered
here.

There is an important analogy of this Bayesian
procedure in fault-tree analysis. Test and/or prior
data can be incorporated in fault-tree models, not
only on the elementary basic events in the tree but
also on events above the basic-event level, even for
the top event itself. The main limitation concerns the
location of any identical basic events in the tree and
the restriction required here that such repeated
events occur only within the same substructure. This
requirement essentially restricts the use of this
method to rather simple fault-tree models.

The method also provides a convenient means to
assess the impact on system availability of test data
at various levels within the system. This cannot be
done directly with existing models that ignore mul-
tilevel data. For example, the benefits to system
availability of additional component versus subsys-
tem-level test data can be readily and quickly deter-
mined. Thus the Bayesian model presented here can
be a useful aid in allocating test resources at any

level from component through complete-system test-
ing.

Finally, we have developed a basic FORTRAN 77
interactive computer program to implement this pro-
cedure. The program is named BAPSS (Bayesian
Analysis of Parallel/Series Systems). A listing of this
program and sample output for the coolant-injection-
system example considered here are available from
us on request.
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